RECEIVED

2015 MAY 14 PM 1: 15

IDAHO PUBLIC UTILITIES COMMISSION

Benjamin J. Otto (ID Bar # 8292) 710 N 6<sup>th</sup> Street Boise, ID 83701 Ph: (208) 345-6933 x 12 Fax: (208) 344-0344 botto@idahoconservation.org

Matt Vespa (CA Bar #222265) Sierra Club 85 Second St., 2<sup>nd</sup> Floor San Francisco, CA 94105 Ph: (415) 977-5753 Fax: (415 977-5793 matt.vespa@sierraclub.com

Attorneys for the Idaho Conservation League and Sierra Club

#### BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION

| IN THE MATTER OF IDAHO POWER<br>COMPANY'S PETITION TO MODIFY TERMS<br>AND CONDITIONS OF PURPA PURCHASE<br>AGREEMENTS          | )<br>)<br>)<br>)                        | CASE NO. IPC-E-15-01 |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|
| IN THE MATTER OF AVISTA<br>CORPORATION'S PETITION TO MODIFY<br>TERMS AND CONDITIONS OF PURPA<br>PURCHASE AGREEMENTS           | - )<br>)<br>)<br>)                      | CASE NO. AVU-E-15-01 |
| IN THE MATTER OF ROCKY MOUNTAIN<br>POWER COMPANY'S PETITION TO MODIFY<br>TERMS AND CONDITIONS OF PURPA<br>PURCHASE AGREEMENTS | ))))))))))))))))))))))))))))))))))))))) | CASE NO. PAC-E-15-03 |
|                                                                                                                               | )                                       |                      |

Idaho Conservation League and the Sierra Club

Rebuttal Testimony of R. Thomas Beach

May 14, 2015

Q: Are you the same R. Thomas Beach who filed Direct Testimony on behalf of the Idaho
 Conservation League and the Sierra Club on April 23 2015?

3 A: Yes.

- 4
- 5

## Q: Please summarize your rebuttal testimony.

A: I provide my opinion on three topics. First, I rebut Staff Witness Mr. Sterling's testimony
on pages 13 - 15 regarding the relative risk of long-term contracts. Second, I rebut Mr. Sterling's
position that long-term commitments to utility-owned resources are different than long-term
qualifying facility (QF) contracts, because of the scrutiny afforded to utility projects in the IRP
process. Third, I describe an example of an adjustable rate contract that complies with PURPA.

Q: Do you agree with Mr. Sterling that "a fixed price contract is more risky than one in
which prices are adjusted frequently"?<sup>1</sup>

14 No. The standard definition of "risk" is "the chance of loss."<sup>2</sup> A contract whose price A: 15 adjusts frequently may produce the result that the ratepayer receives a price close to the 16 prevailing market price. In this respect, such a contract may reduce the risk that the ratepayer 17 will pay a price different than the market price. However, based on my experience in the utility 18 industry, this is not what the ratepayer desires, particularly if there is substantial volatility in the 19 market price, for example, as there is in the natural gas market, illustrated in Figure 1 reproduced 20 from my direct testimony. Consumers value rate stability and reasonably predictable rate 21 changes and monthly bills.

<sup>&</sup>lt;sup>1</sup> Sterling Direct, at pg. 13, ln 9 – 10.

 <sup>&</sup>lt;sup>2</sup> Webster's New Twentieth Century Dictionary (2<sup>nd</sup> edition, 1983).
 IPC-E-15-01
 Beach, Rebuttal
 Idaho Conservation League and Sierra Club



What the ratepayer seeks is a low price, not just a price that equals the market price. And if they cannot always obtain a low price; they prefer a stable price that is predictable. Ratepayers can be substantially harmed if their costs for energy at times are very high as a result of the volatility in energy market prices. As a result, consumers generally are willing to pay a premium to expected market prices in order to eliminate the future volatility in market prices. In essence, this premium represents insurance that consumers are willing to buy against the high costs of periodic spikes in market prices.

9

10

1

11 contracts?

Q:

 A: Yes. There are numerous examples and studies that demonstrate that consumers are
 IPC-E-15-01 Beach, Rebuttal Idaho Conservation League and Sierra Club

Does the economic literature commonly ascribe a risk reduction benefit to fixed price

willing to pay a premium to fix or to limit the price of a commodity, including energy
 commodities.

| 3  | • | Perhaps the most familiar is the fixed-rate home mortgage, which typically carries a       |
|----|---|--------------------------------------------------------------------------------------------|
| 4  |   | higher interest rate than an adjustable rate mortgage as the premium required to           |
| 5  |   | eliminate the risk of future periods of high interest rates.                               |
| 6  | • | The natural gas forward market provides consumers with a means to buy future supplies      |
| 7  |   | of natural gas at a price known today. Comparisons between forward gas market prices       |
| 8  |   | and contemporaneous fundamentals-based forecasts of gas prices reveal a consistent         |
| 9  |   | premium in the forward prices, perhaps associated with the "risk premium" that sellers in  |
| 10 |   | the forward markets require, and that buyers are willing to pay, in order to fix future    |
| 11 |   | prices. <sup>3</sup>                                                                       |
| 12 | • | Long-term contracts for natural gas, at publicly-known prices, are not common today.       |
| 13 |   | However, such contracts typically show a premium to current price forecasts. For           |
| 14 |   | example, in 2011 Public Service of Colorado (PSCo) signed a ten-year gas supply contract   |
| 15 |   | with Anadarko Petroleum to support the replacement of a portion of PSCo's coal-fired       |
| 16 |   | generation with gas generation, at a fixed price that was \$1.38 per MMBtu higher than the |
| 17 |   | Energy Information Administration's contemporaneous forecast of prices in PSCo's           |
| 18 |   | market. <sup>4</sup>                                                                       |
| 19 | • | Many utilities, including those in Idaho, conduct risk management programs that include    |
| 20 |   | hedging that uses a variety of forward market instruments and that is designed primarily   |
| 21 |   | to reduce the near-term volatility of their fuel and purchased power expenses. Generally,  |

<sup>&</sup>lt;sup>3</sup> Mark Bolinger and Ryan Wiser, *Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices* (Lawrence Berkeley National Lab, January 2010), esp. Figure 8, available at http://app.lbl.gov/sites/oll/files/UBDATE%20MEMO%201hpl%20\_%2053557.pdf

IPC-E-15-01

Idaho Conservation League and Sierra Club

http://emp.lbl.gov/sites/all/files/UPDATE%20MEMO%20lbnl%20-%2053587.pdf.
 <sup>4</sup> Lisa Huber, Utility-scale Wind and Natural Gas Volatility: Unlocking the Hedge Value of Wind for Utilities and Their Customers (Rocky Mountain Institute [RMI], July 2012), at pg. 13-14. The executive summary is attached as Exhibit 304. The full report is available at http://www.rmi.org/Knowledge-Center/Library/2012-07\_WindNaturalGasVolatility.

Beach, Rebuttal

| 1  |         | these programs focus on reducing volatility only in the next 1-3 years, as the forward     |
|----|---------|--------------------------------------------------------------------------------------------|
| 2  |         | markets are most liquid in the near-term and there are substantial transaction costs       |
| 3  |         | associated with long-term hedges in financial markets. Significantly, PacifiCorp's         |
| 4  |         | discussion of its hedging program in its most recent IRP emphasizes how its long position  |
| 5  |         | in the power market functions as a hedge against its short position in natural gas, and    |
| 6  |         | concludes that "[t]his has the effect of reducing the amount of natural gas hedging that   |
| 7  |         | the Company would otherwise pursue."5 This is exactly the hedge represented by the         |
| 8  |         | fixed-price solar contracts at issue in this case. In addition, other observers have noted |
| 9  |         | that long-term, fixed-price contracts for renewable generation provide utilities with a    |
| 10 |         | means not available in the financial markets to hedge their long-term exposure to gas and  |
| 11 |         | power markets, and could thus replace a portion of their current budgets for risk          |
| 12 |         | management. <sup>6</sup>                                                                   |
| 13 |         |                                                                                            |
| 14 | Q:      | Can you provide examples of "investments made by private investors in which the rates      |
| 15 | are fix | ed and the entire revenue is guaranteed for 20 year periods"? <sup>7</sup>                 |
| 16 | A:      | Yes, a home mortgage with a fixed interest rate is an obvious example. Banks and other     |
| 17 | financ  | ial institutions invest in the housing market by lending money to homeowners at fixed      |
| 18 | rates o | of return for the interest and principal, for terms of 15 or 30 years. The revenue stream  |
| 19 | from t  | his investment is guaranteed by a lien on the underlying home property.                    |
| 20 |         |                                                                                            |
| 21 | Q:      | Is QF revenue guaranteed in Idaho for 20 years?                                            |

22 A:

# No. QFs must actually deliver energy within the performance bounds contained in the

Beach, Rebuttal

 <sup>&</sup>lt;sup>5</sup> PacifiCorp 2015 IRP, at pg. 246-247.
 <sup>6</sup> Supra note 4, L. Huber, Utility-scale Wind and Natural Gas Volatility: Unlocking the Hedge Value of Wind for Utilities and Their Customers. (The Executive Summary is attached as Exhibit 304). <sup>7</sup> Sterling Direct, at pg. 15, ln 9 – 12.
 IPC-E-15-01

Idaho Conservation League and Sierra Club

1 contracts to receive any payments. They are not paid if the QF project is never built or fails to 2 operate correctly. They are not paid for over-delivery and they are penalized for under-delivery. 3 The only element of the contractual payment which is guaranteed is the rate. I note that this is 4 substantially riskier for the QF project than an investment in generation assets is for the utility. 5 Once a utility generation asset is approved for rate recovery through the utility's rate base, the 6 utility will recover its costs, including necessary fuel, and earn a return, even if the plant is out of 7 service or does not perform with the efficiency originally advertised. The only circumstance in 8 which this assured return will be reduced is the infrequent event that the Commission finds, 9 typically after a lengthy regulatory process, that the utility's operation of the plant was imprudent 10 or unreasonable.<sup>8</sup> No such finding is required to deny payment to a QF project: if the QF fails to 11 deliver per the contract, it is not paid. Ratepayers benefit from the QF's assumption of this 12 appreciably greater level of operating risk, compared to utility-owned generation. 13 14 Q: Do you agree with Mr. Sterling that it would be "fair" for utilities to receive long-term 15 commitments to build utility-owned resources, while QFs are limited to contracts no longer 16 than five years, because of the "intense scrutiny" of the Integrated Resource Plan (IRP) and 17 other approval processes for utility-owned resources?<sup>9</sup>

A: Based on my understanding, PURPA projects in Idaho undergo an equivalently "intense"
level of scrutiny. First, the Commission approves an avoided cost methodology developed
through a fully litigated Commission docket with multiple parties. Second, the utility's
comprehensive IRP process establishes a future resource plan, including the timing of the utility's
future need for generation, and models the utility's avoided energy and capacity costs associated
with that plan. This extensive process, combining both the IRP and the Commission's approved

 <sup>&</sup>lt;sup>8</sup> See Order No. 33140 at p 5, AVU-E-14-06 (September 30, 2014) (allowing recovery of replacement power costs, and declining to review recovery of fixed costs, due to unforced outage of Colstrip Unit 4).
 <sup>9</sup> Sterling Direct, at pg. 21, ln 22 through pg. 22, ln 7. IPC-E-15-01

avoided cost methodology, establishes the level and timing of both the capacity and energy
payments unique to each proposed QF, and has regular annual updates to ensure accurate
information as time moves forward. Importantly, the assumptions and computer model used to
develop these avoided cost prices are the same ones used to assess utility-proposed new
generation or transmission resources.

Finally, once a QF and utility negotiate a contract, the Commission must approve the
contract to ensure adherence to Idaho rules and practices. These contracts include performance
guarantees by the QF that are more stringent than those which apply to a utility-owned plant.
Idaho's method for calculating avoided costs also relies on the utilities' IRPs and thus provides
the same assumptions, uses the same tools, and is subject to the same robust scrutiny as utility
proposals to build owned resources.

12

# Q: In your experience can a state establish long-term PURPA contracts with an adjustable component to rates?

15 Yes. For example, in the 1980s, California adopted a standard QF contract for renewable A: 16 generators ("small power producers" under PURPA) that included ten years of fixed energy and 17 capacity prices, followed by an additional 5 to 20 years of fixed capacity prices but variable energy 18 prices indexed to natural gas prices and the incremental heat rates of the California utilities.<sup>10</sup> 19 The CPUC found that this contract structure was necessary to allow renewable QF generation to 20 be financed in the state. The result of this contract was the successful development of many of 21 the first large-scale wind, solar, biomass, and geothermal projects in the U.S. Many of the 22 renewable projects brought on-line in this initial tranche of QF development in California 23 continue to operate today under successor contracts in the state's Renewable Portfolio Standard

 $<sup>^{\</sup>rm 10}\,$  See CPUC Decision No. 83-09-054 (12 CPUC 2d 604), at 8-9.

IPC-E-15-01

Idaho Conservation League and Sierra Club

(RPS) program, and, as I noted in my direct testimony, these projects supply the lowest-cost
 renewable generation now available to the RPS.

3 Q: Could such a structure be adapted to how QF generation is priced in Idaho? 4 Yes. Idaho currently calculates the rates for capacity and energy separately. Capacity A: payments are based on the capital costs of a combined cycle combustion turbine and begin in the 5 first year the utility has an identified resource deficiency. Capacity payments continue through 6 7 the life of the contract and for subsequent contracts based on the premise that, once a QF has 8 resolved a capacity deficit, it continues to avoid other capacity needs for the life of the project. I 9 do not recommend any adjustments to this portion of the avoided costs rates or to power 10 purchase agreements. 11 The Commission could adopt a variable component to the energy rate. For the energy 12 component, the first ten years of prices in the contract would be fixed at the level indicated by the 13 current application of the IRP method. Beginning in Year 11, the portion of the Year 11 14 indicative energy price that represents the forecast of Mid-Columbia (Mid-C) prices in Year 11

15 would not be fixed, but would be variable based on actual Mid-C prices beginning in Year 11.

16 The remainder of the indicative energy price for Years 11-20 would continue to be fixed. This

17 would allow, in essence, for the energy portion of the contract to be re-priced after the first ten

18 years. For example, assume that the contract price in Year 11 under the IRP Method at the time

19 of contract formation was \$75 per MWh, and that at that time the forecast of Mid-C prices in

20 Year 11 was \$45 per MWh. Under this option, in Year 11, the contract would include a fixed

21 component of \$30 per MWh (\$75 - \$45 = \$30), and the remainder of the contract price would be

IPC-E-15-01 Beach, Rebuttal Idaho Conservation League and Sierra Club

- 1 based on actual Mid-C prices in Year 11, which could be higher or lower than the originally
- 2 forecasted \$45 per MWh.<sup>11</sup>
- 3
- 4 Q: Does this conclude your rebuttal testimony as of May 14, 2015?
- 5 A: Yes.

IPC-E-15-01 Beach, Rebuttal Idaho Conservation League and Sierra Club

<sup>&</sup>lt;sup>11</sup> This simplified example uses annual prices. It is my understanding that the IRP method uses much more granular prices disaggregated by month and High Load/Low Load hours, so the calculation proposed here would be performed on that more granular basis.

#### BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION

CASE NO. IPC-E-15-01 CASE NO. AVU-E-15-01 CASE NO. PAC-E-15-03

Idaho Conservation League and the Sierra Club

Rebuttal Testimony of R. Thomas Beach

# Exhibit 304

Lisa Huber, *Utility-scale Wind and Natural Gas Volatility: Unlocking the Hedge Value of Wind for Utilities and Their Customers* (Rocky Mountain Institute, July 2012) (Executive Summary)

# **Utility-Scale Wind and Natural Gas Volatility**

Uncovering the Hedge Value of Wind For Utilities and Their Customers

Lisa Huber | July 2012



# **ROCKY MOUNTAIN INSTITUTE | RMI.ORG**

2317 Snowmass Creek Rd. Snowmass, CO 81654

## Acknowledgements

Special thanks to Amory Lovins, Dan Seif and Jon Creyts of Rocky Mountain Institute, and the following individuals for their valuable insight:

Will Babler, First Capitol
Tom Beach and Patrick McGuire, Crossborder Energy
Mark Bolinger, Lawrence Berkeley National Lab
Tim Carter, Xcel Energy
Gary Demasi, Google
Michel DiCapua, Charles Blanchard, and Stefan Linder, Bloomberg New Energy Finance
Jenny Heeter, NREL
Dr. Taku Ide, Koveva
Buck Martinez and David Bates, Florida Power & Light
Edward May, US Renewables Group
Duncan McIntyre, Altenex
Will Shikani, Macquarie
Steven Taub, GE Capital
Kevin Walsh, GE Energy Financial Services

Also, considerable appreciation is extended to the Stanback Internship Program at Duke University's Nicholas School of the Environment for making this research project possible.

# Table of Contents

| ACKNOWLEDGEMENTS                                                                                                                                                                                    | 2                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| EXECUTIVE SUMMARY                                                                                                                                                                                   | 4                           |
| BACKGROUND                                                                                                                                                                                          | 5                           |
| WHAT IS VOLATILITY?<br>HISTORICAL VOLATILITY<br>IMPLIED VOLATILITY                                                                                                                                  | 6<br>7<br>7                 |
| RISK DISTRIBUTION                                                                                                                                                                                   | 8                           |
| VOLATILITY PRICING<br>THEORETICAL MODELS<br>UTILITY HEDGING STRATEGIES                                                                                                                              | <b>10</b><br>11<br>         |
| SOLUTIONS                                                                                                                                                                                           | 15                          |
| CASE STUDIES<br>UTILITY: PUBLIC SERVICE COMPANY OF COLORADO<br>INDUSTRIAL AND LARGE COMMERCIAL CUSTOMERS: ALTENEX BUSINESS MODEL<br>COMMERCIAL AND RESIDENTIAL CUSTOMERS: AUSTIN ENERGY GREENCHOICE | <b>17</b><br>17<br>19<br>19 |
| CONCLUSION                                                                                                                                                                                          | 20                          |
| APPENDIX                                                                                                                                                                                            |                             |

# **EXECUTIVE SUMMARY**

Prudent investors do not solely invest in junk bonds over treasury bonds; they do not purely chase yield without regard to risk. A portfolio approach applies not only to personal finances, but also to energy investments. While natural gas spot prices are low today, they remain volatile and present a number of risks<sup>1</sup>:

- Unreliable natural gas and electricity market forecasts
- Uncertain power generation costs for IPPs, utilities and regulators
- Unpredictable costs for large customers, especially publicly traded companies that must report to shareholders and industrial consumers who buy directly from the market
- Unexpected Fuel Cost Adjustments (FCA) for residential customers

This paper explores methods of quantifying natural gas volatility by examining theoretical models as well as case studies of utility hedging strategies. Including these volatility risk premiums in the price of natural gas establishes a basis for even comparison with utility-scale wind contracts, which enables smarter decision analysis by regulatory agencies, utilities, and ratepayers. This analysis shows that even without the Federal Production Tax Credit (PTC) and Renewable Portfolio Standards (RPS) power pricing support, wind becomes competitive with natural gas years sooner than is commonly believed, and in many cases is the economic choice for new build generation<sup>2</sup>. Wind competitiveness can be realized without increasing utility hedging budgets by redirecting current hedging cash flows from short-term option strategies into long-term wind Power Purchase Agreements (PPA). Using this methodology, hedging benefits can also be realized at the customer level by large organizations signing direct PPAs and residential customers participating in effective green power programs (GPP). This paper will demonstrate the hedging benefits of utility-scale wind and present practical solutions for utilities and ratepayers alike to decrease risk and encourage further domestic wind development.

<sup>&</sup>lt;sup>1</sup> Roesser, Randy. "Natural Gas Price Volatility." Electricity Supply and Analysis Division, California Energy Commision, 2009.

<sup>&</sup>lt;sup>2</sup>This paper underscores the importance of hedging against gas price volatility risk; however, short-term variability in wind must be acknowledged as an additional risk. PPA pricing models used in this analysis include an average \$6/MWh cost to utilities for intermittency integration. A future analysis incorporating more specific costs and wind hedging instruments would be beneficial, as risks associated with wind variability and intermittency range widely by region.

### **CERTIFICATE OF SERVICE**

I hereby certify that on this 14th day of May 2015, I delivered true and correct copies of the REBUTTAL TESTIMONY OF ADAM WENNER, REBUTTAL TESTIMONY OF R. THOMAS BEACH, and EXHIBITS 304 on behalf of the Idaho Conservation League and the Sierra Club the following persons via the method of service noted:

#### Hand Delivery:

Jean Jewell Commission Secretary Idaho Public Utilities Commission 42TW.Washington St. Boise, ID 83702-5983 (Original and nine copies provided)

#### **Electronic Mail:**

Idaho Power

Donovan E. Walker Regulatory Dockets Idaho Power Company 1221 West Idaho Street P.O. Box 70 Boise, ID 83707 dwalker@idahopower.com dockets@idahopower.com

#### Avista

Michael G. Andrea, Senior Counsel Clint Kalich Avista Corporation 1411 E. Mission Ave, MSC-23 Spokane, WA 99202 Michael.andrea@avistacorp.com Clint.kalish@avistacorp.com

Rocky Mountain Power Daniel Solander Ted Weston Rocky Mountain Power 201 S. Main Street, Ste 2400 Salt Lake City, UT 84111 Daniel.solander@pacificorp.com Ted.weston@pacificorp.com datarequest@pacificorp.com

J.R. Simplot Corp & Clearwater Paper Peter J. Richardson Gregory M. Adams Richardson Adams, PLLC 515 N. 27<sup>th</sup> Street Boise, ID 83702 peter@richardsonadams.com greg@richardsonadmas.com

Dr. Don Reading 6070 Hill Road Boise, ID 83703 dreading@mindspring.com

Carol Haugen, Clearwater Paper Carol.haugen@clearwater.com

Twin Falls Canal, Northside Canal, American Falls Reservoir District No 2. C. Tom Arkoosh Arkoosh Law Offices 802 W. Bannock St Ste. 900 P.O. Box 2900 Boise, ID 83701 Tom.arkoosh@arkoosh.com Erin.cecil@arkoosh.com

IPC-E-15-01 Certificate of Service – Rebuttal Testimony of Wenner and Beach 2015 MAY 14 PM 1: 1

COMMISSIO

Intermountain Energy Partners Dean J. Miller McDevitt & Miller LLP 420 W. Bannock Street PO Box 2564-83701 Boise, ID 83702 joe@mcdevitt-miller.com

Leif Elgethun, PE, LLE AP Intermountain Energy Partners PO Box 7354 Boise, ID 83707 leif@sitebasedenergy.com

Idaho Irrigation Pumpers Association Eric L. Olsen Racine, Olson, Nye, Budge & Bailey, Chartered P.O. Box 1391 201 E. Center Pocatello, ID 83204 elo@racinelaw.net

Anthony Yankel 29814 Lake Road Bay Village, OH 44140 tony@yankel.net

Micron Technology Richard Malmgren Assistant General Counsel Micron Technology Inc. 800 South Federal Way Boise, ID 83716 remalmgren@micron.com

Frederick J Schmidt Pamela S Howland Holland & Hart LLP 377 S. Nevada St. Carson City, NV 89703 fschmidt@hollandhart.com phowland@holandhart.com *Amalgamated Sugar* Scott Dale Blickenstaff Amalgamated Sugar Co 1651 S. Saturn Way, STE 100 Boise, Idaho 83702 sblickenstaff@amalsugar.com

Renewable Energy Coalition Ronald L. Williams Williams Bradbury, P.C. 1015 W. Hays St. Boise, Idaho 83702 ron@williamsbradbury.com

Irion Sanger Sanger law, P.C. 1117 SW 53<sup>rd</sup> Avenue Portland, OR 97215 irion@sinager-law.com

to

Benjamin J. Otto